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GENERATION OF ECT IMAGES FROM CAPACITANCE MEASUREMENTS 
 
1. INTRODUCTION 
 
An ECT system provides a means for determining the distribution of a mixture of two dielectric 
(insulating) materials inside a vessel. It does this by measuring the capacitances between 
combinations of pairs of electrodes (electrode-pairs) placed around the perimiter of the sensor. 
The sensor cross-section can be of any shape, but most work to-date has concentrated on sensors 
having a circular cross-section.  
 
For practical reasons, the number of electrodes placed around the sensor perimiter rarely 
exceeds 16 and values of 6,8 or 12 are more common. The maximum number of independent 
electrode-pair capacitance measurements is given by the equation: 
 
   M = E.(E - 1)/2      (1.1) 
 
where E is the number of electrodes. For a 12-electrode sensor, there will be 66 independent 
electrode-pair capacitances. 
 
The permittivity distribution can be defined in any convenient form. A common format, uses a 
square grid of 32 x 32 = 1024 pixels to represent the sensor cross-section.  
 
An ECT system attempts to compute the permittivity distribution from the electrode pair 
capacitance measurements.  With a 32 x 32 grid, the task can be seen to be to calculate the 
values of 1024 pixel elements from 66 capacitance measurements. It is mathematically 
impossible to carry out this calculation accurately as there is insufficient information available 
due to the limited number of electrode-pair capacitance measurements. The task therefore 
reduces to finding the best possible approximate solution to the problem. In the following 
sections we will attempt to explain how this is achieved in a practical ECT system. 
 
The techniques used to solve this problem evolved over an extended period of time during the  
original research into ECT at UMIST and elsewhere. However, very little information apears to 
have been published about this aspect of the research work. What follows was uncovered by  
reading the original ECT papers and UMIST PhD theses, together with extensive discussions of 
the problem with some of the original and current UMIST researchers.    
 
The UMIST researchers made several successive refinements during their quest to find a 
practical method which would allow reasonably accurate images to be constructed from the 
electrode-pair capacitance measurements. As the image construction concept is not particularly 
easy to understand, we will explain the technique by following the steps taken by the original 
researchers to arrive at the method which is in current use. We will do this by considering 
initially a very simple (and artificial) sensor model. Once the principles have been explained, we 
will move onto more realistic sensor models. 
 
 
1.2  A NOTE ON THE FORMAT OF THE TEXT 
 
In what follows, we have tried to keep the explanation as simple as possible. At the same time, 
we want to lead the reader to the final solution adopted. We have tried to do this by indicating 
some sections in square brackets [ ]. These sections can be ignored on a first reading of the text. 
However, they will need to be read and understood ultimately to allow the reader to follow the 
mathematics introduced later. 
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2. SIMPLE SQUARE SENSOR MODEL 
 
 
An ECT sensor is normally used to measure the permittivity distribution of a mixture of two 
dielectric materials. For simplicity in what follows, we shall assume that the lower permittivity 
material is air (ie the sensor is empty).  
 
It is convenient to work in normalised units for both the permittivities and electrode-pair 
capacitances.  Using this system, we define the normalised permittivity of the lower permittivity 
material to be represented by the value zero and the normalised permittivity of the higher 
permittivity material to be represented by the value 1.  
 
We shall start by considering a very simple square capacitance sensor having 12 electrodes, with 
3 electrodes located along each side of the square. The cross-section inside the sensor is 
represented by a grid of 3 X 3 = 9 pixels, labelled A to I, as shown in figure 1. 
 
For simplicity, we shall assume that the electric field lines run only parallel to the sides of the 
square as shown in figure 2. This is a gross simplification of what happens in reality, but is a 
useful starting point in our attempt to explain how an ECT sensor works. We will show later 
how the principle can be extended for use with more realistic electric field distributions.  
 
The capacitance between any pair of electrodes will only be affected by a pixel inside this sensor 
if the pixel intercepts the electric field lines between these electrodes. It follows that, for this 
simple sensor model, only those electrodes which are opposite each other on opposing sides of 
the sensor will be affected by changes in the permittivity of the pixels inside the sensor.   
 
For this simple sensor model, we therefore need to consider only the capacitances between 6 
electrode-pair combinations,  namely: 
 
  1 - 9,  2 - 8,  3 - 7,  4 - 12,   5 - 11, and  6 - 10 
 
We designate these capacitances as C1-9 etc. where C1-9 means the capacitance between 
electrodes 1 and 9 etc. 
 
The capacitances measured between these electrode-pairs are also normalised in a similar 
manner to those of the permittivity values. When the sensor contains the lower permittivity 
material, we define the value of the normalised capacitances measured between the electrode 
pairs to be zero and to be 1 when the sensor is filled with the higher permittivity material. 
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3. THE SENSITIVITY MAP OF THE SENSOR 
 
 
We are going to consider how the capacitances measured between the electrode pairs of an 
empty sensor are affected when a dielectric probe, consisting of a square dielectric rod whose 
cross-section is the same size as one pixel, is located at each of the 9 pixel locations in turn.   
 
By our previous definition, the normalised capacitances measured between any two pairs of 
electrodes will be zero when the sensor is empty.  
 
We will first consider what happens when the dielectric probe is located at Pixel E in the 
otherwise empty sensor. This situation is represented in figure 3, where the red colour  indicates 
that the centre pixel E is occupied by material having the higher value of permittivity (the 
dielectric bar) and the dark blue colour indicates that the remaining pixels are occupied by lower 
permittivity material (air). 
 
In our simple sensor model, we have assumed that the electric field lines are parallel to the sides 
of the sensor, and it follows that the dielectric probe will only affect the capacitance measured 
between electrodes whose electric field lines interact with the cross section of the probe. Hence,  
in this case, the only electrode pairs whose capacitance will be affected will be electrode pairs  
2-8 and 5-11.  
 
If the probe is now moved to pixel B, the electrode pairs whose capacitance is changed will be 
electrodes 2-8 and 4-12. The same arguments can be used to determine which electrode pairs 
will be affected when the probe is placed in any of the other 7 pixels. 
 
By locating the permittivity probe at each pixel location in turn, we can construct a  3 X 3 
element matrix, for each electrode pair combination. These are known as sensitivity matrices, 
and show, for each electrode-pair, how the permittivity probe will affect the capacitance 
between the electrodes for each  pixel location.  
 
In the case of a 3 X 3 pixel grid, the sensitivity matrix for each electrode-pair consists of a set of 
9 sensitivity coefficients corresponding to each of the pixels inside the sensor. The sensitivity 
matrix can be written as follows: 
 
 
     SA SB SC 

    SD SE SF 

    SG SH SI 

 
 
where SA, SB etc. are the sensitivity coefficients for pixels A,B etc. 
 
We will now further simplify the situation by representing the sensitivity coefficients in binary 
format. That is, if the probe affects the electrode pair capacitance at a particular pixel location, 
we signify this by entering the value 1 in the sensitivity matrix for this pixel location. Similarly, 
if there is no effect, we illustrate this by writing 0 in the pixel location. 
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This is best illustrated by some examples.  
 
Consider the electrode pair combination S2-8.  Bearing in mind our previous (highly simplified) 
assumption about the  paths of the electric field lines inside the sensor, the  sensitivity matrix for 
this electrode pair can be written down by inspection as follows: 
 
  S2-8       0 1 0 
    0 1 0 
    0 1 0 
 
Similarly, the matrix for the electrode pair 5-11 can be written: 
 
 
  S5-11  0 0 0 
    1 1 1 
    0 0 0 
 
 
All of the other sensitvity matrices can be written down in a similar manner.  
 
Note that, for this sensor model, only 4 other electrode combinations will have matrices 
containing non-zero sensitivity coefficients (for electrode pairs 3 -7, 4 -12, 5 -11 and 6 - 10). All 
of the matrices for the remaining electrode pair combinations will contain only zeroes. This is  
because we have assumed that there is no capacitive coupling between any other electrode 
combinations, which in turn, follows from the simple electric field paths which we have 
assumed for this sensor. 
 
The six sensitivity matrices which contain non-zero sensitivity coefficients are shown in 
diagrammatic form in figure 4. The white pixels represent sensitivity coefficients with zero 
coefficients and the dark pixels represent sensitivity coefficients with the value 1. 
 
To summarise, each electrode-pair combination will have an associated sensitivity matrix 
containing N elements, where N is the number of pixels. The elements in the sensitivity matrix 
for each electrode pair indicate whether a change in the permittivity of a single pixel inside the 
sensor will affect the capacitance measured between the  electrodes of this pair. In our first, very 
simple sensor model, if the capacitance changes when the permittivity of a particular pixel is 
increased or decreased, the pixel sensitivity coefficient for that pixel is assigned the value 1. If 
there is no change to the electrode-pair capacitance, then the pixel sensitivity coefficient is set to 
zero. 
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4. THE FORWARD PROBLEM 
 
 
The next question to consider is how the electrode-pair capacitances change when an arbitary 
permittivity distribution exists inside the sensor.  
 
We will assume that the sensor is filled with a mixture of the lower and upper permittivity 
materials. This will give rise to a set of normalised capacitance values for the set of electrode 
pairs and we will assume that these normalised capacitances will have values somewhere within 
the range 0 to 1. 
 
The first task is to determine how to calculate the inter-electrode capacitances from the values of 
the normalised permittivities of the pixels for any distribution of permittivity inside the sensor. 
This is known as the Forward problem. 
 
The method which is adopted to solve the Forward problem is based on the Electrical Network 
Superposition Theorem. Expressing this theorem in a form which is relevant to the forward 
problem, the Superposition Theorem states that, in a linear electrical network, the combined 
effect of a large number of stimuli can be found by adding up the effects which result when each 
stimulus acts individually.  
 
In our case the stimuli are the permittivity values of the individual pixels inside the sensor and 
the effects are the inter-electrode capacitances measured between the electrode-pairs.  
 
We can now apply this theorem to find the capacitances between the electrode pairs when the 
sensor is filled with the higher permittivity material as follows: 
 
For each electrode-pair, we measure the set of elemental normalised capacitances between the 
electrodes when each pixel in turn (the probe pixel) contains the higher permittivity material, 
while all of the remaining pixels contain the lower permittivity material. For our simple square 
sensor with 9 pixels, there will obviously be 9 elemental capacitances to measure for each 
location of the probe pixel.  
 
To find the capacitance between these two electrodes when the sensor is completely filled with 
the higher permittivity material, the Superposition theorem states that we should simply add up 
all of these 9 elemental capacitances. 
 
For our simple sensor model, we know that for any particular electrode-pair, only some of the 
pixels inside the sensor will change the capacitance between this pair of electrodes and this 
information is contained in the sensitivity matrix. For the simple binary sensitivity matrix which 
we have discussed so far, the matrix tells us which pixels influence the capacitance between a 
given pair of electrodes and which pixels have no effect on this capacitance. 
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Applying the Superposition theorem, the capacitance Cm between any pair of electrodes can 
therefore be written in the following general form: 
 
 Cm  = Pm.(SA.KA + SB.KB + SC.KC +  ............  SI.KI)     (4.1) 
 
 
Where:  
 
m represents the electrode pair combinations (1-9, 2-8 etc.) and Cm is the (normalised) inter-
electrode capacitance for the mth electrode-pair.  
 
SA, SB, etc are the sensitivity coefficients of each individual pixel in the grid for the mth 
electrode pair. 
 
KA, KB etc. are the values of (normalised) permittivity of the material in each pixel.  
 
Pm is a constant included to ensure that the normalising remains valid, whose value can be 
determined as described below. 
  
 
Now consider specifically the capacitance between electrodes 2 and 8 when the sensor is full of 
the higher permittivity material. In this situation, the normalised permittivity of each pixel (KA, 
KB etc.) will, by definition, have the value 1.  
 
In the case of the square sensor, we have already shown that the sensitivity coefficients SB, SE 

and SH have the value 1 while all of the remaining sensitivity coefficients for this electrode 
combination are zero. 
 
In this case, equation 4.1 becomes 
 
 
  C2-8 = P2-8.(1.1 + 1.1 + 1.1)  = 3.P2-8    (4.2) 
 
However, we also know that, by definition, the normalised electrode-pair capacitances for all 
electrode pairs have the value 1 when the sensor is full of the higher permittivity material. It 
follows that the value of the normalising constant P2-8 for electrode-pair 2-8 must have the value 
1/3. 
 
We can calculate the value of Pm for all of the other electrode pair combinations in a similar 
manner. For the simple sensor model which we are currently using, it is clear that all values of 
Pm have the value 1/3. However, this simple result will not generally hold for more complex 
field distributions.     
 
For any other values of  pixel permittivity, we can find the electrode-pair capacitances by 
substituting the known values of normalised permittivity into equation 4.1  as follows: 
 
eg for electrode-pair 2-8 
 
  C2-8 = (1/3).(1.KB + 1.KE + 1.KH)     (4.3) 
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For example, if the normalised pixel permittivities SB, SE and SH are reduced to values of 0.5, 
then the capacitance C2-8  calculated from equation 4.3 will have the value: 
 
  C2-8  =  (1/3).(0.5 + 0.5 +0.5) = 0.5    (4.4) 
 
 
 
As a second example, let us assume that the normalised pixels have different values e.g. let KB 
=1, KE =0.5 and KH = 0.3.  
 
In this case, C2-8  will have the normalised capacitance given by:  
 
  C2-8 = (1/3).(1 + 0.5 + 0.3) = 0.6.     (4.5) 
 
 
 
So far, we have based our model on the use of binary sensitivity coefficients, in the interests of 
simplicity. However, as will be shown later, if the true values of the sensitivity cofefficients can 
be found (either by calculation or by measurement), these can be used instead of the crude 
binary coefficients which we have so-far assumed.  
 
It turns out that by using these more accurate sensitivity coefficients, the solution to the forward 
problem can be found with reasonable accuracy. However, we will stay with the binary 
sensitivity coefficients for the present for reasons which will become clear in the following 
sections. 
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[5. THE GENERAL SOLUTION OF THE FORWARD PROBLEM 
 
 
Using equation 4.1, we can use the general expression for Cm to find, for example, the value of 
C2-8  as follows:  
 
C2-8 = P2-8.(SA.KA + SB.KB + SC.KC + SD.KD + SE.KE + SF.KF + SG.KG + SH.KH  +SI.KI)         
            
         (5.1) 
 
There will of course be similar equations for the other electrode pairs. For example, 
 
C1-9 = P1-9.(SA.KA + SB.KB + SC.KC + SD.KC + SE.KE + SF.KF + SG.KG + SH.KH  +SI.KI)         
           (5.2) 
 
The complete set of relationships for all electrode pairs can be written concisely in matrix form 
as follows: 
 
    C = S.K      (5.3) 
 
where : 
 
C is an M x 1 matrix containing the normalised electrode-pair capacitances Cm (in the nominal 
range 0 to 1).  
 
M is the number of unique electrode-pair combinations (eg 66 for a 12-electrode sensor) 
 
Each m value corresponds to an electrode - pair combination. For example, m=1 might be 
defined to be the pair 1-9, m = 2 to be the pair 2-8 etc.  
 
K is an N x 1 matrix containing the normalised pixel permittivities (in the nominal range 0 to 1)  
 
N is the number of pixels representing the sensor cross-section (eg 1024 for a 32 x 32 grid) 
 
S is an M x N matrix containing the set of sensitivity matrices for each electrode-pair. The 
matrix S is commonly referred to as the sensitivity map of the sensor.  
 
   
 
Note that in this equation, the matrix S incorporates the normalising constants P mentioned 
previously. That is, the sensitivity coefficients are now normalised as well as the vales of C and 
K.    
 
 

This matrix equation defines the general solution to the forward problem. ] 
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6. THE INVERSE PROBLEM 
 
As we have seen, once the set of sensitivity matrices (the sensitivity map) for the sensor has 
been found, it is a relatively straightforward process to calculate what the electrode-pair 
capacitances will be for a given permittivity distribution inside the sensor.   
 
However, in an ECT system we normally want to be able to determine the permittivity 
distribution inside the sensor from knowledge of the capacitances between the pairs of 
electrodes which surround the sensor, ie the inverse of the problem which we have just 
outlined. 
 
The question which therefore needs to be answered is, given a set of (measured) normalised 
electrode-pair  capacitances, what are the values of normalised permittivity of each of the pixels 
inside the sensor which have given rise to this set of electrode-pair capacitances? This is known 
as the inverse problem. 
 
We will seek to find a solution to the inverse problem using the sensitivity matrices which we 
have derived above. The method which we shall use is called Linear Back-Projection (LBP).  
 
The basis of the method is to consider each electrode-pair capacitance in turn and to consider 
which pixels inside the sensor have contributed to the change in the normalised capacitance 
from the zero values when the sensor is empty. 
 
We do this by referring to the binary sensitivity matrix for each unique electrode-pair. 
Consider electrode-pair 2-8 for example. We know from the previous sections that only pixels 
B, E and H can have contributed to any change in the capacitance C2-8. However, we have no 
means of knowing how much of the change in capacitance to attribute to each pixel.  
 
Faced with this problem, the LBP method makes the pragmatic asumption that, for a 
specific electrode-pair, all of the pixels with non-zero sensitivity coefficients contribute 
equally to the capacitance change for each specific electrode pair and that they do this by 
changing their permittivity values by identical amounts. It further assumes that these 
incremental changes in the permittivities of the pixels which contributed to this 
capacitance change are proportional to the change in the electrode-pair capacitance. That 
is: 
 
  ∆KB = ∆KE = ∆KH

 = Qn.C2-8      (6.1) 
 
where ∆KB is the elemental change in the normalised permittiviy of pixel B etc., C2-8 is the 
normalised capacitance measured between electrode pairs 2 and 8 and Qn is another scaling 
constant which is required to ensure that the normalising remains valid. 
 
This situation is represented in figure 5 for electrode-pair C2-8, which shows, in light-blue, the 
pixels which are assumed to have contributed to the capacitance between this pair of electrodes. 
Figure 6 similarly shows the pixels which contribute to the capacitance between electrodes 5 
and 11. 
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[Equation 6.1 is a special case of the more general expression which needs to be written if we 
make no assumptions about the values of the sensitivity coefficients for each pixel. This general 
expression can be written as: 
 
 
  ∆Kn = Qn.Snm.Cm       (6.2) 
 
where: 
  
∆Kn  is the elemental change in permittivity of pixel n due to the capacitance Cm of electrode-
pair m  
 
Qn is a normalising constant  
 
Smn is the sensitivity coefficient which corresponds to the nth pixel and the mth electrode-pair 

capacitance.] 
 
 
The next assumption is that this process can be applied for each electrode-pair in turn and that 
the overall value of pixel permittivity for each individual pixel can again be found by applying 
the Superposition theorem.  
 
Hence we obtain the pixel permittivity by summing the elemental values of permittivity 
obtained from the equations for each electrode pair.  
 
For our simple square sensor, this can be expressed as follows, using pixel B as an example. 
 
 KB = ∆KB(1-9) + ∆KB(2-8) + ∆KB(3-7) + ∆KB(4-12) + ∆KB(5-11) + ∆KB(6-10) (6.3) 
 
 
Where ∆KB(1-9)  means the elemental change in permittivity of pixel B due to the capacitance 
change of electrode-pair 1-9 etc. Using equation 6.1 or 6.2 we obtain:  
 
 
KB   =  QB.(SB(1-9) .C(1-9) + SB(2-8) .C(2-8) + SB(3-7) .C(3-7) + SB(4-12) .C(4-12) + SB(5-11) .C(5-11)  

 

 + SB(6-10) .C(6-10))        (6.4) 
 
 
where SB(1-9) is the sensitivity coefficient of pixel B for electrode-pair 1-9, C(1-9) is the 
normalised capacitance between electrode pair 1-9 etc. and QB is a normalising constant for the 
permittivity of pixel B.   
 
 
By inspection of figures 1 and 2,  pixel B will only affect the capacitance between electrode-
pairs 2-8 and 4-12.  
 
Hence SB(2-8) = 1 and SB(4-12) = 1, while all of the other values of SB are zero, giving:    
 
  KB = QB.(1 +1) = 2.QB       (6.5) 
We know that when all of the electrode-pair capacitances are 1, the normalised capacitances 
also have the value 1. 
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Substituting these conditions in equation 6.5 we obtain: 
 
  1 = QB.(2)         (6.6) 
 
and hence the value of QB = 1/2. 
 
 
Similar expressions can be written for each of the other pixels.  
 
For example, the permittivity of pixel A is given by: 
 
  KA = ∆KA(1-9) + ∆KA(2-8) + ∆KA(3-7)  + ∆KA(4-12) + ∆KA(5-11) + ∆KA(6-10) (6.7) 
 
 
 = QA.(SA(1-9) .C(1-9) + SA(2-8) .C(2-8) + SA(3-7) .C(3-7) + SA(4-12) .C(4-12) + SA(5-11) .C(5-11) 

 

  + SA(6-10) .C(6-10))        (6.8)  
 
 
By similar reasoning, it is clear that the value of QA is also 1/2.  It turns out that the values of all 
of the normalising constants for the simple square sensor are also 1/2. 
 

[In general terms, the permittivity of an individual pixel is given by: 
 
  M 

 Kn =  Σ Qn.Snm.Cm        (6.9) 
   m=1 
 
where 
 
Kn is the permittivity of pixel n 
Cm are the set of  normalised capacitance measurements for the M electrode pairs. 
Qn are the set of normalising constants for the pixel n. 
Snm are the set of sensitivity coefficients for pixel n and the M sets of electrode-pairs. 
 
This can be written in matrix format as follows: 
 
   K = ST.C       (6.10) 
      
where  
 
K is an N x 1 matrix containing the normalised permittivities of each of the N pixels. 
ST is the normalised transpose sensitivity map (formed by interchanging the rows and columns 
of the sensitivity map matrix S) 
C is an M x 1 matrix containing the M normalised electrode-pair capacitances. 
 
 
Equation 6.10 is the general equation which is used in the LBP algorithm to solve the inverse 

problem and hence to calculate the pixel permittivity distribution.] 
 
 
7. A SIMPLE EXAMPLE OF LINEAR BACK-PROJECTION 
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Having explained the principle of Linear Back-Projection, we will now consider a simple 
example.  
 
Let’s assume that the sensor contains a dielectric bar of square cross-section and normalised 
permittivity 1, which occupies pixel E in the centre of the sensor, as shown in figure 3. All of 
the other pixels will be assumed to contain material of normalised permittivity zero. 
 
We have represented this situation in figure 3 using the colour scale which is used widely to 
display permittivity images in ECT systems. In this system, the upper value of normalised  
permittivity (1) is shown in red and the lower value (0) is shown in dark-blue. Intermediate 
permittivity values are shown on a scale which extends from blue through green to red. 
 
We know from the sensitivity matrices, that  pixel E will only affect the capacitance between 
electrode-pairs 2-8 and 5-11. 
 
Using our knowledge of the sensitivity coefficients and the values of pixel permittivities, we can 
first calculate what the values of C2-8 and C5-11 will be using equation 4.1 as follows: 
 
   C2-8 = (1/3). (1.1) = 1/3     (7.1) 
 
similarly  
 
   C5-11 =  (1/3).(1.1) = 1/3     (7.2) 
 
 
We can now apply the equation of back-projection (6.10) to re-calculate the value of  the pixels 
from the electrode-pair capacitances. 
 
Taking pixel A as an example, and bearing in mind that the only non-zero electrode-pair 
capacitances generated by the “dielectric bar” in pixel E are C(2-8)  and C(5-11), we can calculate 
the value of pixel A as follows: 
 
   KA = (1/2). (SA(2-8) .C(2-8) + SA(5-11).C(5-11)).   7.3)  
 
 
However, both SA(2-8)  and SA(5-11) are zero for these two electrode-pair combinations. 
 
Hence the value of KA calculated using the LBP method is zero, which is correct, as the only 
pixel occupied by an object of non-zero permittivity is pixel E. 
 
Using the obvious symmetry properties of the sensor, it is clear that similar results will be 
obtained for pixels C, G and I, and hence KC, KG and KI will all have zero values.  
 
This is a promising start, as we know from figure 3 that the actual pixel permittivities for pixels 
A, C, G and D are zero.  
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We will now repeat this process for pixel B. 
 
 
    KB = (1/2). (SB(2-8) .C(2-8) + SB(5-11).C(5-11)).   (7.4)  
 
 
In this case,  SB(2-8) has the value 1  while SA(5-11) is zero for these two electrode-pair 
combinations. 
 
Hence the value of KB calculated by the LBP method is (1/2).(1/3) = 1/6.  
 
Again, using the symmetry properties of the sensor, it is clear that the values of pixels D, F and 
H will be identical to that of pixel B, ie KD, KF and KH will all have the value 1/6. 
 
By inspecting figure 3, we know that these values should be zero. However, in this case, the 
LBP algorithm has assigned pixels B, D, F and H a finite positive value of 1/6. 
 
 
We will now complete the process by calculating the value of pixel E. 
 
    KE = (1/2). (SE(2-8) .C(2-8) + SE(5-11).C(5-11))   (7.5) 
 
 
In this case,  both  SB(2-8)  and SA(5-11)  have the value 1 for these two electrode-pair combinations. 
 
Hence the value of KE calculated by the LBP method is (1/2).((1/3) + (1/3)) = 1/3.  
 
Referring back to figure 3, we know that the value of KE should be 1. The LBP algorithm has 
therefore produced a value for pixel E which is significantly lower than its known value. 
 
The results for the calculated pixel permittivites (in matrix format) can be summarised as 
follows: 
  0 1/6 0 
 
  1/6 1/3 1/6 
 
  0 1/6 0 
 
These results are represented in figure 7, which represents pixel values of 0 as dark blue, 1/6 as 
light blue and 1/3 as green.  
 
However, we know that the correct answer is the following matrix: 
 
  0 0 0  
 
  0 1 0 
 
  0 0 0 
 
And this situation is shown in figure 3 on the same colour scale. 
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We have attempted to indicate how this permittivity distribution has occurred by showing the 
elemental pixel permittivities which result from the only two non-zero capacitance pair 
measurements C2-8 and C5-11 in figures 5 and 6. 
 
Figure 5 shows the elemental pixel permittivities which result from the C2-8 capacitance and 
figure 6 shows the elemental pixel permittivities which result from the C5-11 capacitance.  In 
these figures, the dark blue pixels have zero values and the light blue squares have normalised 
permittivities of 1/6 as calculated above. 
 
When we add up these two permittivity distributions, we obtain figure 7, where the green pixel 
(E)  has the value 1/3.   
 
By comparing the known permittivity distribution (figure 3) with the results calculated using the 
LBP method, (figure 7), it is clear that what has happened is that the LBP algorithm has spread 
out, or blurred the original probe pixel over a much larger area than that occupied by the original 
pixel probe.  
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7.1  INHERENT CHARACTERICTICS AND ERRORS OF THE LBP METHOD 
 
 
By comparing the LBP solution (figure 7) with the correct answer (figure 3), we can now 
identify some of the main characteristics of the LBP algorithm: 
 
 
1. The calculated value of the probe pixel is 1/3 of its known value. In general, the LBP 
algorithm will always under-estimate areas of high permittivity. 
 
2. Some of the pixels which should have zero values have had finite values assigned to them. In 
general, the LBP algorithm will over-estimate areas of low permittivity. 
 
3. The sum of the calculated pixel permittivities equals that of the original single probe pixel. In 
general, the average permittivity of all of the pixels calculated by the LBP algorithm will 
approximately equal that of the sensor when it contains the test object. The LBP algorithm is 
therefore useful for calculating the average voidages or volume ratios of the sensor contents.   
 
 
 
 
In practice, the use of a very simple sensor model and binary sensitivity coefficients have 
aggravated the deficiences of the LBP algorithm and this is therefore a rather extreme example. 
However, the results obtained here illustrate the principle and also the main failings of the LBP 
algorithm. 
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8. EXTENSION TO CIRCULAR SENSORS 
 
Until now, we have considered a simple and rather artificial square sensor with a limited 
number of pixels and very restricted electric field lines. We will now show how the method can 
be extended to a circular sensor containing a much larger number of pixels and where we will 
not make any unrealistic assumptions about the electric field lines and inter-electrode coupling. 
For the case of the circular sensor, we will assume that there is capacitive coupling between all 
pairs of electrodes.  
 
 
8.1   8-ELECTRODE CIRCULAR SENSOR 
 
Consider the 8-electrode circular sensor shown in figure 8. The sensor is shown superimposed 
on a grid of 32 X 32 square pixels. 
 
The approximate binary sensitivity maps of the sensor can be deduced by considering the paths 
of the Electric field lines between the electrode pairs. For example, the binary sensitivity map 
for pairs 1-2 is shown in figure 9(a). The black pixels indicate that the pixel will influence the 
capacitance between that electrode pair and the white pixels indicate that the pixel will have no 
influence on the capacitance between those pairs. 
 
The binary sensitivity maps for electrodes pairs 1-3, 1-4 and 1-5 are shown in figures 9(b) to 
9(d). It is obvious that the sensitivity maps for any other electrode-pair combination will be 
identical to one of these four basic maps (although rotated around the sensor), because of the 
symmetry properties of the sensor. 
 
 
 
8.2 APPLICATION OF LINEAR BACK-PROJECTION 
 
The principle of back-projection for circular sensors remains the same as that outlined in 
sections 6 and 7 for the simple square sensor. For each inter-electrode capacitance measurement, 
using the simple binary sensitivity maps, we assume that all pixels which have a non-zero 
sensitivity coefficient contribute equally to the measured change in capacitance between the 
electrode pairs.  
 
Hence, for each electrode pair measurement, we allocate each pixel which has a non-zero 
sensitivity coefficient an elemental value which is proportional to the measured change in the 
normalised capacitance between these electrodes. We then add up the elemental values for the 
pixel for all of the electrode-pair capacitance measurements to obtain the value of the pixel 
permittivity. 
 
The final step is to normalise this procedure so that all of the pixels have the value 1 when the 
normalised inter-electrode pair capacitances are all 1 and have the value 0 when all of the 
normalised inter-electrode pair capacitances are zero.  
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Figure 8.    8 - electrode circular sensor and 32 X 32 pixel grid 
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Figure 9.   Binary sensitivity maps for 8 - electrode sensor 
 



 24 

8.3 THE USE OF REAL SENSITIVITY MAPS 
 
The LBP method can be easily extended for the more practical case where the sensitivity 
coefficients are not simply binary, but have values which lie within the nominal range 0 to 1. In 
this case, the elemental pixel values are found by multiplying the sensitivity coefficients by the 
normalised capacitance measurements using equations 6.9 and 6.10. 
 
Some typical sensitivity matrices for an 8-electrode circular ECT sensor are shown in figure 10. 
 
 

 
 
 

Figure 10. Primary sensitivity maps for an 8-electrode sensor. 
 
 
We can therefore apply equation 6.10 directly to obtain the permittivity values of each pixel 
from the set of capacitance measurements. 
 
 
 
8.3 CHARACTERISTIC RESULTS 
 
From the description of the LBP method given in section 8.2 and previously, it is clear that 
images produced by this method will always be approximate. The method spreads the true 
image over the whole of the sensor area and consequently produces very blurred images. 
Moreover, because the image has been spread out over the sensor area, the magnitude of the 
pixels will always be less than the true values. However, the sum of all of the image pixels will 
approximate to the true value . 
 
A typical image for a circular tube, containing the same material used to calibrate the sensor is 
shown in figure 11. The actual tube diameter was 40mm and the sensor internal diameter was 
100mm. This corresponds to a nominal voidage of 16%. The LBP algorithm gave an overall 
voidage of between 12 and 16%, depending on the sensor model which was used*.  The effects 
of image blurring are clearly visible. The correct image would be a filled red circle of diameter 
40% of that of the sensor, where red corresponds to a normalised permittivity of 1. The central 
area of the actual image produced by back-projection has a much lower value of permittivity, 
around 0.5 and displayed as green in figure 11.  
 
It is possible to improve this image using simple iterative techniques. One method for doing this 
is described in PTL application note AN4 (An iterative method for improving ECT images). An 
example of the improvement in image quality which can be obtained using this method is 
shown in figure 12 for the same measurement data as shown in figure 11. The image of the rod 
is now of the correct size and magnitude. 
 
 
*    See PTL Application note AN2,  Calculation of Volume ratio for ECT sensors. 
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